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Bisdipyrrin 1 reacts with Ru3(CO)12 to yield the pentanu-
clear cluster 2; the X-ray structure of 2 sheds new light on the
metalation processes of oligopyrrolic ligands.

The coordination chemisty of bile pigments and related
ligands,1 an emerging branch of porphyrin research, has been
developed mainly in the last decade.2 Most of the structurally
characterized complexes of this class were found to exhibit
metalloporphyrin-like structures with the metal ion bound to the
four central nitrogen atoms of the ligand. The higher flexibility
of the open-chain tetrapyrroles with respect to the porphyrins,
however, also allows other coordination modes, and some
examples of M2L2 arrangements3 as well as complexes
coordinated through donor atoms of the ligand periphery4 were
obtained. In our efforts to explore the coordination chemistry of
open-chain oligopyrroles and to apply helical chiral chelates in
catalytic processes, ruthenium complexes have become a major
goal. This communication reports the unprecedented coordina-
tion of ruthenium to the bile pigment analogue bisdipyrrin 15

and provides the first example for the role of NH activation in
tetrapyrrole metalation processes.

The method most widely used to introduce a ruthenium ion
into a porphyrin is the reaction of the ligand with an excess of
Ru3(CO)12 in a high boiling solvent.6 When applying these
conditions (Scheme 1) to the bisdipyrrin 1 (twofold molar
excess of ruthenium carrier, toluene, 130 °C), a single defined
product was observed by TLC and could subsequently be
isolated using radial chromatography (13% yield). Upon slow
evaporation from hexane–CH2Cl2, dark red crystals suitable for

X-ray diffraction were obtained. As the structural analysis7

revealed, the product was not the anticipated (carbonyl)ruthen-
ium bisdipyrrin, but the pentanuclear cluster 2.8

The complicated arrangement of the Ru5H2 cluster core
found in 2 can best be understood as composed from three
subunits. Two Ru2 moieties are located above and below the
tetrapyrrolic ligand. While one of these is bound through a
normal dipyrrin N2 chelate and a h5-coordinated pyrrole
[Ru(2)–Ru(5)], the other is found to bind to the meso-carbon
atom C(34) of the second dipyrrolic half of the bisdipyrrin,
supported by another h5 coordination [Ru(3)–Ru(4)].9 Finally,
the fifth ruthenium center Ru(1) is situated in between the two
remaining nitrogen atoms N(3) and N(4) and acts as a central
unit, connecting the two Ru2 fragments via m-hydrido bridges to
Ru(2) and Ru(3), respectively. Fig. 1 demonstrates the action of
the flexible and severely twisted bisdipyrrin ligand on the Ru2–
H–Ru–H–Ru2 moiety. In addition, eleven surrounding CO
ligands serve to saturate the coordination spheres of the
ruthenium centers of cluster 2, allowing octahedral geometries
for all five metal atoms (Fig. 2). The cluster core and the
tetrapyrrolic ligand thus both adopt conformations optimized
for the stabilization of the uncommon structure. This synergysm
accounts for the surprising fact that 2 shows enhanced
resistance against thermal cluster degradation and decomposi-
tion.

Since the assignment of hydride ligands bound to heavy
metal atoms through X-ray diffraction is generally problematic,
a 1H NMR spectroscopic investigation of 2 was undertaken
which showed signals at 215.30 and 218.40 corresponding to
the two hydrido ligands in 2 (Fig. 3). The coupling (4 Hz)
between these hydrides is in accord with them both being bound
to the same ruthenium center. In addition, the signal at d218.40
shows a coupling of 1 Hz with the resonance of the meso proton

Scheme 1

Fig. 1 Schakal plot of the molecular structure of 2 (alkyl groups and CO
ligands omitted for clarity). Selected bond lengths (Å) and bond angles (°):
Ru(1)–Ru(2) 3.26, Ru(1)–Ru(3) 3.27, Ru(3)–Ru(4) 2.778(13), Ru(2)–Ru(5)
2.793(12), Ru(3)–C(34) 2.209(10), Ru(1)–N(3) 2.086(7), Ru(1)–N(4)
2.205(8), Ru(2)–N(1) 2.149(7), Ru(2)–N(2) 2.119(8), C(33)–C(34)
1.482(13), C(34)–C(35) 1.470(13), C(24)–C(25) 1.361(15), C(25)–C(26)
1.415(14); Ru(1)–H(1)–Ru(2) 130.7, Ru(1)–H(2)–Ru(3) 154.7, N(1)–
Ru(2)–N(2) 84.3(3), N(3)–Ru(1)–N(4) 89.0(3).
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H(34), indicative of the close vicinity of H(2) and H(34), so
strongly supporting the structural findings.

The bridging hydrides originate from the NH functionalities
of the bisdipyrrin ligand and indicates that the well-established
mechanism for tetrapyrrole metalation, deformation of the
macrocycle, subsequent binding of a metal ion to two nitrogen
donors, and insertion into the porphyrin cavity with concomi-
tant deprotonation,10 is not the only plausible mechanistic
pathway. Obviously, a route involving the oxidative addition of
an NH moiety on an appropriate metal carrier constitutes a
suitable alternative, especially if carriers with metal centers in
low oxidation states are employed.11 For porphyrins, the initial
structures formed during metalation processes using metal
carbonyls probably resemble cluster fragment complexes
similar to that found for bisdipyrrin 2; owing to the rigid
macrocyclic character of porphyrins, however, cluster degrada-
tion should be fast and inevitably result in the well-known N4-
coordinated metal porphyrins.12
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Fig. 2 View of the octahedral coordination geometries of the five ruthenium
metal centers in 2 (alkyl groups omitted for clarity).

Fig. 3 Details of the 1H NMR spectrum of 2 (300 MHz, benzene-d6).
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